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Abstract

     In this study, a global three-dimensional variational analysis system is formulated in

model grid space. This formulation allows greater flexibility ( e.g. inhomogeneity and

anisotropy) for background error statistics. A simpler formulation, inhomogeneous only in the

latitude direction, was chosen for these initial tests. The background error statistics are

defined as functions of the latitudinal grid and are estimated with the NMC method. The

horizontal scales of the variables are obtained through the variances of the variables and of

their Laplacian. The vertical scales are estimated through the statistics of the vertical

correlation of each variable and are applied locally using recursive filters. For the multivariate

correlation between wind and mass fields, a statistical linear relationship between the stream

function and the balanced part of temperature and surface pressure is assumed. A localized

correlation between the velocity potential and the stream function is also used to account for

the positive correlation between the vorticity and divergence in the planetary boundary layer.

     Horizontally, the global domain is divided into three pieces so that efficient spatial

recursive filters can be used to spread out the information from the observation locations.

This analysis system is tested against the operational Spectral Statistical-Interpolation analysis

system at the National Centers for Environmental Prediction. The results indicate that 3D Var

in physical space is as effective as 3D Var in spectral space in the extratropics and yields

superior results in the tropics as a result of the latitude dependence of the background error

statistics.
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1. Introduction

     Current implementations of 3-dimensional variational analysis (3D Var) at many

operational centers are constructed in spectral space, which has the advantage that the

statistics of background error, both structure and amplitude, can be easily obtained and

applied in the analysis procedure. It is simpler to apply a diagonal background error

covariance in spectral space than to convolve the corresponding smoothing kernel with the

innovations in physical space. However, with only a diagonal covariance in spectral space, 

the structure function is limited to being geographically homogeneous and isotropic about its

center (Parrish and Derber 1992, Courtier et al. 1998). One has little control over the spatial

variation of the error statistics when a simplified diagonal background error covariance in

spectral space is used. With some computational cost associated with extra transforms in and

out of the physical space in each iteration of the optimization solver, spatially

inhomogeneous, e.g., latitude-dependent, variances can be applied. But, it is not as easy to

construct inhomogeneous and/or anisotropic shapes for the covariance profiles in spectral

space. Other methods have been tested for inhomogeneous and/or anisotropic covariance, for

example: Derber and Rosati (1989), Desrozier (1997), Riishojgaard (1998), Weaver and

Courtier (2001).

     Hayden and Purser (1995), extending the work of Purser and McQuigg (1982), showed

how a very simple and computationally inexpensive family of recursive filters can be

combined to yield empirical smoothers which are locally isotropic but retain the freedom of

spatial inhomogeneity. Recent developments with spatially recursive filters (Purser et al.

2002a) enable the construction of a variational analysis in physical space which allows more
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degrees of freedom in defining the error statistics adaptively. The final goal is to have an

analysis system with inhomogeneous and generally anisotropic three-dimensional background

error covariances. 

     In this paper we test and illustrate the first step toward this goal; a global 3D Var in

physical space that is as effective as 3D Var in spectral space. Using recursive filters, we

construct an analysis system in physical space with latitude-dependent structure functions and

other error statistics. The background error covariances are still isotropic and homogenous in

the zonal direction. The basic structure of the 3D Var is described in section 2 and aspects of

the application of the recursive filters to the global domain in section 3. In section 4 we

discuss the method used to estimate the background error statistics. The results and

conclusion are presented in sections 5 and 6.

2 Global analysis on grid space

     In order to incorporate as much as possible of the existing formulation of the global

analysis system at NCEP, the version in physical space is formulated to be similar to the

current NCEP spectral version: the Spectral Statistical-Interpolation analysis system (SSI).

Notation used here loosely conforms with that of Ide at al. ( 1997). The functional to be

minimized is 

  J = 1/2 [x  B  x + (Hx-y) R  (Hx-y )] (2.1)T  -1   T  -1  

where 

x is a vector of analysis increment, 

B is the background error covariance matrix, 

y is a vector of the observational residuals, y=y  - Hx  obs  guess
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R is the observational and representativeness error covariance matrix, 

H is a transformation operator from the analysis variable to the form of the observation

vector.

The analysis variables, defined on the grid instead of in spectral coefficients, are: stream

function ( �  ); unbalanced part of velocity potential ( � ); the unbalanced part of temperature

(T); unbalanced part of surface pressure (P); and pseudo relative humidity (q) (water vapor

mixing ratio divided by the saturated value from the guess field, Dee and Da Silva, 2002 ).

Calculation of  H R  (Hx-y ) involves the following steps:T -1  

� calculate ,  and  from the analysis variables �  and add them to the unbalanced

parts

�  convert �  and  �  to U and V.

� observational forward model on the variables

� calculate the residual, multiply by R , -1

� apply the adjoint of the first three steps in the reversed order.

The background error B can be written as  B  (V B B B B V +V B B B B V ) Bz x y y x x y y x z
1 1 1 1 1 1 2 2 2 2 2 2

where V  and V  are the standard deviations of the error. B B , and B  are applications of1 1
x, y z

recursive filters in the x, y and z directions. B  and B  are the filters with different scales (see1 2

section 4).  The preconditioned conjugate gradient algorithm (Gill et al. 1981; Navon and

Legler 1987; Derber and Rosati 1989) was chosen because the multiple filters in the

horizontal direction are easier to implement in this solution algorithm. The amplitudes and

scales of the background error are defined as functions of latitude and height.

     An initial condition with an appropriate balance between the mass and wind fields

minimizes the adjustment and decreases the spin-up so that more information from the data
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can be preserved. The balance also projects information from one analysis variable to the

other. For example, over the southern ocean where conventional observations are scarce, the

mass information from satellite observations is projected in part to the wind field and hence

corrects the flow pattern. For 3D Var in physical space, the multivariate coupling between the

analysis variables of mass and wind is a challenge. Since the variables are defined in physical

space, it is not easy to apply a linear balance operator (Parrish & Derber 1992) which

includes the inverse of the Laplacian operator. However, the relation between the mass field

and the stream function is linear, so that statistical regression between the two is possible. 

     The balanced (slow) part of the temperature increment is defined as where matrix

G projects stream function increments to a vertical profile of the balanced part of temperature

increments. Linear regression is used to calculated the G matrix. Since the variables are

defined on the grid this matrix can be latitude dependent. The resulting global means of the

fraction  of the total temperature and velocity potential explained by the balance relations are

shown in Fig. 1. The balanced part of the temperature increments explains from 50% to 70%

of the variance in the troposphere and decreases to about 20% above 50 mb. The balanced

part of the surface pressure increment is defined as  where matrix W integrates the

appropriate contribution of the stream function from each level. The balanced part accounts

for 86% of the variance of surface pressure increments. A similar balance treatment was also

reported in Gustafsson et al. (1999). We find that the balance design is crucial; The

assimilation degrades quickly without it. For example, without mass-wind balance the fit of

the guess field to the surface pressure observations worsens with time and is doubled in

magnitude within two days (8 cycles) of the assimilation when compared with the results

from the SSI. However with the statistical linear balance defined in the analysis variables, the
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quality of the first guess field is maintained.

     A localized correlation between the velocity potential and the stream function is also

implemented to take into account the positive correlation between divergence and vorticity in

the planetary boundary layer. The balanced part of the velocity potential is defined as  = c

�  where coefficient c is a function of latitude and height. Shown in Fig. 1, the balanced part

explains about 27% of the variance of velocity potential increments near the surface,

decreases to a negligible fraction above the boundary layer, and increases again near the

tropopause.

3. Application of recursive filters to a global domain

     An efficient self-adjoint version of numerical recursive filters can be applied to the task

of convolving a spatial distribution of innovations with a smoothing kernel which is

interpreted to be a covariance function of background error. The basic recursive filter involves

repetitive smoothing in one direction. Here we provide a brief summary of the general ideas

behind recursive filters, illustrated with the simplest first order form of this class of filters.

For a more technical discussion that includes a description of higher-order forms of the

recursive filters, the reader is referred to Purser et al 2002a. The simplest first-order

smoothing operation consists of an 	 advancing' sweep

F  = (1- 
 ) D  + 
  F (3.1)i i i-1

for increasing index i, where D is the input forcing and F is the result of the sweep, followed

by a 	 backing' sweep

R  = (1- 
 ) F  + 
  R (3.2)i i i+1

for decreasing i, where F now represents the input and R the output of the filter. The
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smoothing parameter 
 , which lies between 0 and 1, is related to the correlation length of the

smoothing response function. The computational advantage of recursive filters over non-

recursive ones can be illustrated by the following example. Assume that i = 1, N in (3.1) and

the initial forcing is at i = 1. Since each F  depends on the filter result of the previous pointi

F , the result of F  of the advancing sweep depends on D  in just one sweep. On the otheri-1 N 1

hand, it takes N-1 sweeps for the first order, non-recursive filters to spread the information

from one end of the domain to the other.

     Repetitions of this filter produce a quasi-Gaussian response to an initial impulse. The

results on the Cartesian grid of (a) four applications of first-order recursive filter, (b) one

application of fourth-order recursive filter and (c) the analytical Gaussian, are shown in Fig.

2. The fidelity to a Gaussian form is improved, for a given expenditure of effort, by adopting

fewer, but higher-order forms of the filter. The fourth order recursive filters were used in the

experiments reported in the paper. The significance of the Gaussian form of response profile

is that, in two dimensions, an isotropic response is obtained by sequentially applying two such

filters, once in ‘x’ and once in ‘y’; no other profile shape possesses this simplifying property.

The computational cost of filtering in two dimensions is simply twice the cost of a

one-dimensional application; three dimensional filters cost only three times as much. In

practice, the restriction that covariances should possess only Gaussian profiles is often too

severe. However, by linearly superposing two or more Gaussian contributions of different

scales and amplitudes, a broader repertoire of isotropic covariance profiles becomes available.

The cost increases in proportion to the number of such contributions, of course. We take up

this topic again in section 4.

     To use recursive filters in a global variational analysis, there are some basic requirements
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on the filters. The filters have to be self-adjoint and have the ability to accommodate

geographically adaptive horizontal scales. This latter requirement is important not only for

generating inhomogeneous structure functions but also for accommodating a non-uniform grid.

The recursive filters are also required to have good amplitude control so that the estimated

background error variances can be applied precisely. It is also desirable that the filters have

boundary treatments that avoid any serious numerical artifacts so that they can be applied to

many sub-domains in a way that allows the constituent parts to be merged consistently back

together. This is particularly important for applications to the global domain because it is

difficult to apply recursive filters near the polar areas of the Gaussian grid where the

curvature of the grid cannot be properly accounted for. However, by dividing the global

domain into subregions furnished with their own grid, free of singularities, the recursive filter

technique can be applied without difficulty to each subdomain.

     In our implementation the globe is divided into three pieces: two Cartesian polar patches

and a zonal band in between, and the recursive filters are applied to each subdomain. For the

zonal band, both the inhomogeneity of the Gaussian grid and the shrinking of the zonal grid

increments toward polar areas are treated as an equivalent scale variation. The scale factor in

the zonal direction varies as cos(   ) where   is the latitude. In the meridional direction, the

scale factor is

(    -  )* NLON/4 �  , (3.3)j+1 j-1

where NLON is the number of grid points in the longitudinal direction. For the Cartesian

polar patches the scale factor is 

1/(1+r ), (3.4)2

where r is the distance from the pole in units of zonal grid increments at the equator.
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     For polar patches the transform routine between the Cartesian grid and the lat-lon grid,

and its adjoint are needed. The stereographic projection is used to project the Gaussian grid

onto a plane. In the analysis procedure, the observational residual field is converted with the

adjoint of the transform from the Gaussian grid to the Cartesian grid, recursive filters are

applied, and the forward grid to grid transform is used to bring the field back to the lat-lon

grid. Two blending zones between the polar patches and the zonal band allow a smooth

transition when the three parts are merged back to the global Gaussian grid. Fig. 3 shows the

recursive response of some randomly located impulses in a) two polar patches b) the zonal

patch and c) the global field on the Gaussian grid built from the three patches without

blending. The response amplitude control is validated in the amplitudes at the center of each

impulse after the filters. The response scale of the filters is designed here to be uniform on

the sphere, which can be achieved by counteracting the mapping factors of the grid with scale

variation on each sub-domain. These counteracting factors are necessary to implement

accurately the estimated scales for each variable. As shown in Fig. 3c, the contours on the

boundaries of the subdomains match smoothly even without blending, which indicates that the

definition of the counteracting scales in each patch is consistent, and that the boundary

treatment of the recursive filters is free of numerical artifacts. If we assume that the grid is

Cartesian instead of Gaussian, then the plots in Fig. 3 can be interpreted as filter results with

spatially varying scales. The fact that the reconstructed global fields are almost identical with

(not shown) or without blending indicates that the recursive filters meet the basic

requirements. 

     We have observed that when the scales become very large compared to the subdomain,

e.g., in the stratosphere, the solutions in the buffer zone are very different for each
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subdomain. The resulting global field would merge from one solution to the other gradually.

This is not a problem for temperature and humidity fields since the solution is constrained by

the observations. But for the stream function and velocity potential the forcing (wind

components) of the analysis problem is the gradient of the analysis variables and the

Laplacian of the variable is used as the initial condition for the forecast model. Merging the

domains produces arbitrary gradients and unrealistic analysis results. The problem with large

length scales is general. The reason that it is not significant elsewhere may be because the

contribution from these very large scale is small in the lower levels. We solved this problem

by defining the horizontal background error in spectral space for the stream function and the

unbalanced part of velocity potential for sigma levels (pressure divided by surface pressure, as

defined by Phillips 1957) above 0.15, where the characteristic spatial scales are very large.

Dot products of the forcing field and diagonal background error in spectral space account for

the variance and the horizontal correlation at these levels. The vertical correlation is done

with recursive filters over whole fields.

4. Estimation of background Error covariance 

     The error variance is estimated in grid space by what has become known as the NMC

method (Parrish and Derber 1992, Rabier et al. 1998) . The error statistics are estimated with

the differences of 24 and 48-hour forecasts valid at the same time for 49 cases distributed

over a period of one year. Both the amplitudes and the scales of the background error were

tuned to represent the 6 hr forecast error. The statistics that project multivariate relations

among variables are used in the data assimilation as derived from the NMC method. The

standard deviations of the background error for the analysis variables as functions of latitude
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and height are shown in Fig. 4. The amplitudes are larger in mid-latitudes than in the tropics,

and larger in the southern hemisphere than in the northern hemisphere for the stream function,

the unbalanced temperature, the unbalanced surface pressure, and the pseudo-relative-

humidity. The standard deviation of the stream function increases with height and peaks

between 200 and 300 mb in most areas. The unbalanced part of the temperature has three

local maxima: near the surface; around 200 to 300 mb; and near the top of the model domain.

The standard deviation of the unbalanced part of velocity potential has its maximum in the

tropics and the amplitude increases with height to 150 mb, then decreases. The amplitude of

the error of pseudo relative humidity peaks around 500 mb in the mid latitudes and around

200 mb near the equator. The standard deviation of the unbalanced surface pressure has local

maxima in the mid latitudes in both hemispheres.

     We test two different ways of estimating the correlation length scales. The diagonal

background error covariance in spectral space, estimated from the differences of 24 and 48

hours forecasts, is used to retrieve the scale information. The dot product of the square root of

the two dimensional error covariance and the spectrum of a delta impulse at a given latitude

was taken and the result was transferred back to the grid space. The field is then fitted with

results of the recursive filters to find the scale. A range of scales that cover those found in the

error statistics is divided into equally-spaced small increments. The result of recursive filters

for each incremental scale is used to build a table. This table is then used to find the

corresponding scales of each isotropic structure in the background error statistics. The

structure is fitted locally in the horizontal directions. The procedure is repeated for each

variable at each latitude and height to find the horizontal scales of the structure function. 

     For the stream function the horizontal scales can also be estimated from the variance of
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the vorticity and stream function. The formula 

(see appendix) is used to find the scale of the stream function, where  is the variance of

the stream function and  is that of the vorticity. Similarly the variance of each variable and

the variance of its second derivative are used to estimate its horizontal scales. The second

derivatives are calculated in the spectral space. All the variances are calculated on the grid so

that the local scale information can be estimated. We find that this method produces better

results than those of the previous method. Fig. 5 shows the estimates of horizontal scales of

the analysis variables. The horizontal scales of the stream function and unbalanced part of

velocity potential are largest in the tropics and the scales increase with height. The horizontal

scales of temperature, surface pressure and pseudo-relative humidity are larger in the southern

than in the northern hemisphere but are everywhere much smaller than those of the stream

function and velocity potential. It is found that the horizontal scales decrease when the

resolution of the forecast model is increased.

     The vertical scales are estimated with the vertical correlation of each variable. A second

table that contains the corresponding scales and the recursive results, is built to cover the

range of vertical scales. The table is used to find the scales in vertical grid units for the

corresponding structures in the vertical correlation. The correlation is fitted locally in the

vertical direction. The scale of the best fit from the table is assigned as the scale of the

variable at that vertical level for each latitude. Note that the vertical scales are also locally

defined so that the negative correlation further away in the vertical direction is not included.
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For unbalanced temperature the localized vertical correlation might introduce a hydrostatic

imbalance. However, we find no significant evidence of imbalance when compared with the

analysis results which allow negative correlations, e.g., with the analysis variables defined via

coefficients of empirical orthogonal functions (EOF). For future three dimensional anisotropic

application, the localized correlation with recursive filters is chosen. Fig. 6 shows the vertical

scales of the error structure of the analysis variables. The scales are largest near the surface

boundary layer partly because of finer grid spacing. The vertical scales of the stream function

are the largest out of all the analysis variables, followed by the unbalanced temperature. In

general, the vertical scales are smaller near the tropics than in the mid latitudes. These results

are consistent with what is reported by Rabier et al. (1998) and by Ingleby (2001).

     It has been recognized that objective analysis using the Gaussian shape to model the

covariance severely hampers the ability of the analysis to assimilate the smallest scales. The

power spectrum of a Gaussian-shaped covariance, itself being of Gaussian form, drops off

faster than the spectral decay of the real atmosphere. If we assume that for small scales the

background has little skill, then its error should have similar structure to the field itself (A.

Lorenc, personal communication). Consequently, the tails of the power spectra of the

background error should be fatter (energy decreases slower) than those of any purely

Gaussian spectrum. The fat-tailed feature in the spectra of error covariances is also observed

when the error covariance is defined in spectral space, as in the current operational SSI. It is

straight-forward to apply a background error covariance with a fat-tailed spectrum in a 3D

Var which is defined in spectral space. To achieve a fat-tailed spectrum when using the

recursive filters in physical space for the correlation part of the background error, a linear

combination of multiple recursive filters is needed. 
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     In our procedure, two horizontal scales are applied. The second horizontal scales are set

to be a half the first and the scales estimated from the NMC method fall between the scales

applied. The energy of the analysis increments is projected among the scales. For use with a

massively parallel processor ( MPP ) machine, the horizontal smoothing is done when the

domain is divided into horizontal slices and the vertical smoothing is done when the domain

is in the vertical columns. For computational efficiency, a single recursive filter is used in the

vertical direction for each variable. Non-separability of the statistics was highlighted in the

papers describing the ECMWF 3D Var system (Courtier et al. 1998, Rabier et al. 1998,

Andersson et al. 1998) with different horizontal correlations at different levels, and different

vertical correlations for different horizontal wave numbers. Our configuration only allows the

specification of different horizontal scales at different levels, but not different vertical

correlations for different horizontal wavenumbers. With extra sets of analysis variables, one

for each of the multiple Gaussian scales ( two in our setup), both scale-dependent multivariate

relations and non-separability (different vertical scale for each horizontal scale) are possible.

5 Analysis and Assimilation Results

     The structure functions and the multivariate correlations can be visualized through the

analysis increment produced by a single wind observation. Fig. 7 shows, at sigma level 0.267,

the wind analysis increments in vectors superimposed on contours of u increments, of a 1 m s -

 westerly wind observational residual at 50 N and 330 E at 250 mb. The uneven spacing in1

the increment contours shows the results of the multi-scaled background error. The

characteristics of the fat-tailed error covariance are shown in physical space, which allows the

contour gradient to be tight when necessary, e.g., dense observations, and to be loose where
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there is no other forcing. The vertical cross-section of the analysis increment of u-component

and projected temperature increments are shown in Figs. 8 and 9. North-south temperature

gradients are induced through the multivariate correlation in the definition of the balanced

part of the temperature. The changes in the mass field are stronger in amplitude and shorter in

vertical scale above the forcing than below.

     The analysis system is tested against the operational SSI at NCEP. Two low-resolution

T62 data assimilation experiments are cycled for 19 days to produce two weeks of verifiable

five-day forecasts. Fig. 10 shows the anomaly correlations in the extra-tropics (latitude 20-80

north and south) for 500 mb height. Each experiment is verified against its own analysis. The

14-case mean for the northern hemisphere is 0.750 for the experiment and 0.751 for the

control, and for the southern hemisphere the corresponding values are 0.728 and 0.716. The

experimental analysis system produces neutral impact in the northern hemisphere and slight

(1.7%) positive in the southern hemisphere over the 2-week period. The impact in the tropics,

however, is more consistent and positive. The day-3 root mean square (RMS) vector wind

error at 200 and 850 mb is shown in Fig. 11. The RMS vector wind errors for the 200 mb

wind are 8.04 m s  for the experiment and 8.50 m s  for the control, and are 3.95 m s  and-1       -1        -1

4.55 m s  for experiment and control at 850 mb. The improvement over the period is 5.4%-1

and 13.2% at 200 and 850 mb respectively.

     Smoother solutions have an unfair advantage when RMS is used as a forecast verification

statistic. The analysis increments of the u-component wind at 850 mb in the tropics for the

experiment and control are shown in Fig. 12. The increments in the experiment are neither

smoother nor weaker than those in the control.

     There are several differences between this grid-space filter approach and the SSI
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approach. For example, the experiment employs more localized vertical correlations, thereby

dropping negative correlations farther away in the vertical, and uses a mixture of the spectral

approach and the model grid space filter approach. To address whether these differences lead

to increased noise during the initial integration of the model, the level of initial gravity wave

noise is checked through the RMS divergence of the analysis and the forecast after the first

time step. The results of the first and last cycles are shown in Table 1. The global RMS

divergence (s ) after the first time step of the forecast decreases slightly from that of the-1

initial condition for the experiment in both cycles while that of the control decreases in the

first cycle and increases in the last cycle. The global mean amounts of the convective

precipitation (kg m ) of 0-3, 3-6, 6-9 hr forecast averaged over the assimilation period are-2

shown in Table 2. The two systems produce similar amounts of precipitation globally in the

first nine hours of the forecasts. No evidence of excessive gravity wave adjustment and spin-

up in the experiment system is found.

6 Conclusion

     We propose an alternative way of defining background error covariances in 3D Var. By

using recursive filters in physical space, the covariance can be made inhomogeneous. This

degree of freedom comes with a price: a relatively limited freedom to specify the profile

shape of the error statistics in wave number space. This limitation is partially overcome by

applying multiple recursive filters for the structure functions.

     In the experiments the error structures are kept similar to those in NCEP's SSI since the

scales of the background error structures are estimated by the NMC method and are assumed

to be homogeneous, at least in the zonal direction. The small impact in the extra-tropics
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indicates that 3D Var formulated in physical space can be as effective as in spectral space.

The consistent positive impact in the tropics indicates that the newly-gained freedom in the

background error's spatial variation (latitude dependence in the current setup) is beneficial to

forecasts compared with the greater freedom in wave number space (as in the SSI) in which

the statistics represent the global characteristics lacking any spatial modulation.

     Cutting up the global domain for recursive filters has limitations. The problem is more

severe in stratospheric layers where the scales of the structure function are about as large as

the sub-domain dimensions. The current solution is to apply the horizontal background error

of the stream function and velocity potential in spectral space at those vertical levels where

this problem arises.

     It is straightforward to apply this physical-space 3D variational analysis to a regional

domain. The system is planned to be tested for operational implementation in NCEP. For

future work we plan to develop a fully inhomogeneous and anisotropic background error

covariance in the system using a new extension of the recursive filtering technique which is

briefly described in Purser et al. (2002b). 
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Appendix

Derivation of Horizontal Correlation Length

     The following is a derivation of the formula used to obtain horizontal correlation length

estimates using the ratio of variance of a field with variance of the Laplacian of the field.

Using stream function as an example, Let the stream function error covariance be defined as

where

and

The variance is assumed to be constant. and are the coordinates

of the two points being correlated.

Then the vorticity covariance is given by

which yields upon completing the differential operators,
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The vorticity variance for is given by

and finally, using we have for correlation length estimate, given the vorticity and

stream function variances,
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Fig. 6. Vertical scales (in units of the vertical grid) of the error structure function for (a)the
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Fig. 7. The wind analysis increments in vectors superimposed on contours of U component
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Fig. 10. Anomaly correlations in the extra-tropics for (a) the northern and (b) the southern
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Fig. 11. Day three root mean square vector wind errors in the tropics at (a) 200 and (b) 850
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List of Tables

Table 1. Global RMS divergence of the analysis and the forecast after the first time step

Analysis_1 Forecast_1 Analysis_2 Forecast_2

Exp 8.593e-6 8.361e-6 8.763e-6 8.583e-6

Cntl 8.082e-6 7.962e-6 7.644e-6 7.966e-6

Table 2. Global mean convective precipitation averaged over the assimilation period

0-3 hr 3-6 hr 6-9 hr

Exp 0.2443 0.2331 0.2459

Cntl 0.2449 0.2363 0.2449


